首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89567篇
  免费   8441篇
  国内免费   5271篇
电工技术   3647篇
技术理论   4篇
综合类   9687篇
化学工业   12625篇
金属工艺   6407篇
机械仪表   5333篇
建筑科学   18920篇
矿业工程   3487篇
能源动力   2301篇
轻工业   4751篇
水利工程   2408篇
石油天然气   4366篇
武器工业   889篇
无线电   5669篇
一般工业技术   10153篇
冶金工业   3482篇
原子能技术   530篇
自动化技术   8620篇
  2024年   191篇
  2023年   1289篇
  2022年   2252篇
  2021年   2712篇
  2020年   2667篇
  2019年   2173篇
  2018年   2064篇
  2017年   2579篇
  2016年   2751篇
  2015年   2974篇
  2014年   5481篇
  2013年   4628篇
  2012年   6197篇
  2011年   6874篇
  2010年   5329篇
  2009年   5785篇
  2008年   5255篇
  2007年   6228篇
  2006年   5708篇
  2005年   4954篇
  2004年   4093篇
  2003年   3707篇
  2002年   3114篇
  2001年   2620篇
  2000年   2239篇
  1999年   1793篇
  1998年   1403篇
  1997年   1187篇
  1996年   909篇
  1995年   795篇
  1994年   749篇
  1993年   497篇
  1992年   459篇
  1991年   362篇
  1990年   295篇
  1989年   201篇
  1988年   154篇
  1987年   78篇
  1986年   61篇
  1985年   72篇
  1984年   53篇
  1983年   55篇
  1982年   65篇
  1981年   21篇
  1980年   64篇
  1979年   15篇
  1978年   11篇
  1975年   11篇
  1959年   10篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
文中提出了一种利用有限数量的相量测量单元(PMU)和相量数据集中器(PDC)设计最优监控结构的方法。通过在大量的设定值场景下,使电力系统可观测性曲线的期望值最大化,同时使通信基础设施成本最小化,最终确定PMU和PDC的最佳位置。提出了一种非线性动态扩展卡尔曼滤波(EFK)状态观测器。这种状态观测器可以将暂态行为转换为由代数微分方程描述的广域电力系统,而无需非线性反演技术。最后以IEEE-5电力系统为例,说明了该方法的有效性。  相似文献   
102.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   
103.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
104.
105.
In this work, we introduced a simple solution processing method to prepare yttrium (Y) doped hafnium oxide (HfO2) based dielectric films. The films had high densities, low surface roughness, maximum permittivity of about 32, leakage current < 1.0 × 10?7 A/cm2 at 2 MV/cm, and breakdown field >5.0 MV/cm. In addition to dielectric performance, we investigated the influence of YO1.5 fraction on the electronic structure between Y doped HfO2 thin films and silicon (Si) substrates. The valence band electronic structure, energy gap and conduction band structure changed linearly with YO1.5 fraction. Given this cost-effective deposition technique and excellent dielectric performance, solution-processed Y doped HfO2 based thin films have the potential for insulator applications.  相似文献   
106.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
107.
In this paper, a novel Co3O4 micro-bundles structure (Co3O4 MBs) was obtained at 120 °C after a hydrothermal reaction for 24 h and followed by an annealing treatment at 300 °C in air. The unique Co3O4 MBs are constructed by many adjacent flakes with 0.4 μm in thickness, and exhibit a large surface area of 81.2 m2 g?1 and a mean pore diameter of 6.14 nm, which may facilitate a sufficient contact with electrolyte and then shorten the diffusion pathway of ions. A remarkable electrochemical behavior including specific capacity of 282.3 C g?1 at 1 A g?1 and 205.9 C g?1 at 10 A g?1, and an excellent cycling performance with 74.6% capacity retention after 4000 charge-discharge process at 5 A g?1 are achieved when the test of Co3O4 MBs-modified electrode is performed using three-electrode configuration. Additionally, a hybrid supercapacitor (HSC) was fabricated with the obtained Co3O4 MBs as positive electrode and commercial activated carbon (AC) as negative electrode. The HSC exhibits a specific capacity of 144.1 C g?1 at 1 A g?1 and 126.4% capacity retention after 5000 cycles at 5 A g?1. An energy density of 38.5 W h kg?1 can be obtained at a power density of 962.0 W kg?1, and 29.5 W h kg?1 is still retained at 8532.5 W kg?1. The simple synthetic strategy can be applicable to the synthesis of other transition metal oxides with superior electrochemical performance.  相似文献   
108.
AsSb alloy (0.70–95.81 wt.% As) was prepared by electrodeposition in As(III) and Sb(III) contained electrolytes. The influence of electrolyte composition, hydrochloric acid concentration, and temperature on the composition and structure of AsSb deposits was studied. The electroreduction mechanism of As(III) and Sb(III) in hydrochloric acid solution was revealed via thermodynamic analysis. The results show that the increase of H+ concentration promotes the reduction of As(III), while the increase of Cl concentration significantly inhibits the reduction of Sb(III). As a result, the As content in deposits increases gradually with the increase of hydrochloric acid concentration. Simultaneously, the phase structure of AsSb deposits evolves from crystalline to amorphous. When the As content is 24.55–33.75 wt.%, AsSb mixed crystal is obtained. The electrolysis temperature has little effect on the deposits composition, but the structure of deposits evolves from crystalline to amorphous with decreasing the temperature.  相似文献   
109.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
110.
《Ceramics International》2022,48(6):8012-8024
When applying an additional coating method to fabricate micro-nano hierarchical structure required for superhydrophobic function on glass surface, the hierarchical structure does generally not have good abrasion resistance, due to the weak adhesion between coating and glass surface. However, glass itself is a material with good abrasion resistance. A micro-nano hierarchical structure with honeycomb-shaped micro-armor protection on glass surface by a two-step hydrothermal corrosion method has been constructed: the first step of hydrothermal corrosion in water to construct micro-armor structure, and the second step of hydrothermal corrosion in sodium citrate aqueous solution to fabricate micro-nano hierarchical structure. The advantages of this new method are: the treatment process is simple, and there is no need to apply additional coatings. The micro-nano hierarchical structure constructed on glass surface by this method has a great abrasion resistance. After 1,000 cycles of abrasion under harsh conditions, the nano-structure on glass surface can still be remained intact. It provides a new method for fabricating abrasion-resistant micro-nano hierarchical structure on glass surface, as well as a new approach to the preparation of abrasion-resistant superhydrophobic glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号